ВВЕДЕНИЕ

Червячная передача относится к передачам зацеплением с перекрещивающимися осями валов.

Основные достоинства червячных передач: возможность получения больших передаточных чисел в одной паре, плавность зацепления, возможность самоторможения. Недостатки: сравнительно низкий к.п.д., повышенный износ и склонность к заеданию, необходимость применения для колес дорогих антифрикционных материалов.

Червячные передачи дороже и сложнее зубчатых, поэтому их применяют, как правило, при необходимости передачи движения между перекрещивающимися валами, а также там, где необходимо большое передаточное отношение.

Критерием работоспособности червячных передач является поверхностная прочность зубьев, обеспечивающая их износостойкость и отсутствие выкрашивания и заедания, а также изгибная прочность. При действии в червячном зацеплении кратковременных перегрузок проводится проверка зубьев червячного колеса на изгиб по максимальной нагрузке.

Для тела червяка осуществляется проверочный расчет на жесткость, а также проводится тепловой расчет.

Проектирование осуществляется в два этапа: проектировочный - из условий контактной выносливости определяются основные размеры передачи и проверочный - при известных параметрах передачи в условиях ее работы определяются контактные и изгибные напряжения и сравниваются с допускаемыми по выносливости материала.

Определяются силы, нагружающие подшипники и производится подбор подшипников по грузоподъемности.

КИНЕМАТИЧЕСКИЙ И СИЛОВОЙ РАСЧЕТ

Выбор электродвигателя

Для выбора электродвигателя определяются требуемая его мощность и частота вращения.

Согласно исходным данным на проектирование, требуемую мощность для выполнения технологического процесса можно найти из формулы:

Р вых =F t V, (2.1)

где Р вых - мощность на выходном валу привода, Вт;

F t - тяговое усилие, Н;

V - скорость движения рабочего органа, м/с;

Р вых = 1,5 кВт.

Определение общего К.П.Д. привода

Тогда в соответствии с кинематической цепочкой передачи мощности общий К.П.Д. всего привода рассчитывается по формуле:

з общ = з 1 з 2 з 3 з 4 (2.2)

з общ = 0,80,950,980,99 = 0,74.

Таким образом, из расчета общего К.П.Д. стало видно, что в процессе работы привода только 74% мощности от двигателя будет поступать к барабану лебедки.

Определим требуемую мощность двигателя для нормальной работы лебедки:

Принимаем двигатель мощностью 2,2 кВт.

Расчет частоты вращения вала электродвигателя

Поскольку на данном этапе еще неизвестны передаточные числа передач привода и не известна частота вращения вала двигателя, возникает возможность рассчитать желаемую частоту вращения вала электродвигателя.

Для этого проведены следующие расчеты.

Определение частоты вращения выходного вала привода

Согласно исходным данным угловая скорость выходного вала рассчитывается по формуле:

где щ - угловая скорость, с -1 ;

D б - диаметр барабана, м;

v - скорость движения рабочего органа, м/с.

Найдем частоту вращения, зная угловую скорость по формуле:

об/мин. (2.5)

Определение желаемого передаточного числа привода

Из анализа кинематической схемы привода электролебедки видно, что общее передаточное число его (u общ) образуется за счет передаточного числа редуктора червячной передачи.

Принимаем u чп = 50. Взаимосвязь между частотами вращения вала электродвигателя n дв и выходного вала n з определяется зависимостью:

n дв = n з u общ, (2.6)

тогда желаемая частота вращения вала электродвигателя составит:

n дв = 38,250 = 1910 об/мин.

Согласно имеющейся номенклатуре двигателей наиболее близким к желаемой частоте вращения является двигатель с синхронной частотой вращения, равной 1500 об/мин. С учетом вышеизложенного, окончательно принимаем двигатель марки: 90L4/1395. серии АИР, который обладает следующими характеристиками:

Р дв = 2,2 кВт;

n дв = 1500 об/мин.

Кинематические расчеты

Общее передаточное число:

u общ = n дв / = 1500/38,2=39,3.

Определим все кинематические характеристики проектируемого привода, которые понадобятся в дальнейшем для детальной проработки передачи. Определение частоты и скоростей вращения. Частоты вращения всех валов легко рассчитать, начиная, от выбранной частоты вращения вала электродвигателя с учетом того, что частота вращения каждого последующего вала определяется через частоту вращения предыдущего по формуле (2.7) с учетом передаточного числа:

где n (i+1) - частота вращения i+1 вала, об/мин;

u i -(i+1) - передаточное отношении между i и i+1 валами.

Моменты на валах редуктора:

Т 1 =9,5510 3 (Р/n э)= 9,5510 3 (2,2/1500)=14,0 Нм

Т 2 =Т 1 u=14,039,3=550 Нм.

1 Крутящий момент на выходном валу редуктора M2 [Нм]
Крутящим моментом на выходном валу редуктора называется вращающий момент, подводимый к выходному валу мотор-редуктора, при установленной номинальной мощности Pn, коэффициенте безопасности S, и расчетном сроке службы 10000 часов, с учетом КПД редуктора.
2 Номинальный крутящий момент редуктора Mn2 [Нм]
Номинальным крутящим моментом редуктора называется максимальный крутящий момент, на безопасную передачу которого рассчитан редуктор, исходя из следующих величин:
. коэффициент безопасности S=1
. срок службы 10000 часов.
Величины Mn2 рассчитываются в соответствии со следующими стандартами:
ISO DP 6336 для шестерен;
ISO 281 для подшипников.

3 Максимальный вращающий момент M2max [Нм]
Максимальным вращающим моментом называется наибольший крутящий момент, выдерживаемый редуктором в условиях статической или неоднородной нагрузки с частыми пусками и остановками (это величина понимается как мгновенная пиковая нагрузка при работе редуктора или пусковой крутящий момент под нагрузкой).
4 Необходимый крутящий момент Mr2 [Нм]
Значение крутящего момента, соответствующее необходимым требованиям потребителя. Данная величина всегда должна быть меньше или равна номинальному значению выходного крутящего момента Mn2 выбранного редуктора.
5 Расчетный крутящий момент M c2 [Нм]
Значение крутящего момента, которым необходимо руководствоваться при выборе редуктора с учетом требуемого крутящего момента Mr2 и эксплуатационного коэффициента fs, вычисляется по формуле:

Значения динамического КПД редукторов указаны в таблице (A2)

Предельная термическая мощность Pt [кВт]

Данная величина равна предельному значению передаваемой редуктором механической мощности в условиях непрерывной работы при температуре окружающей среды 20°C без повреждения узлов и деталей редуктора. При температуре окружающей среды, отличной от 20°C, и прерывистом режиме работы значение Pt корректируется с учетом тепловых коэффициентов ft и коэффициентов скорости, приведенных в таблице (A1). Необходимо обеспечить выполнение следующего условия:

Коэффициент полезного действия (КПД)

1 Динамический КПД [ηd]
Динамический КПД представляет собой отношение мощности, получаемой на выходном валу P2, к мощности, приложенной к входному валу P1.

Передаточное число [ i ]

Характеристика, присущая каждому редуктору, равная отношению скорости вращения на входе n1 к скорости вращения на выходе n2:

i = n1/n2

Скорость вращения

1 Скорость на входе n1 [мин -1]
Скорость вращения, подведенная к входному валу редуктора. В случае прямого подсоединения к электродвигателю данное значение равно выходной скорости электродвигателя; в случае подсоединения через другие элементы привода для получения входной скорости редуктора скорость двигателя следует разделить на передаточное число подводящего привода. В этих случаях рекомендуется подводить к редуктору скорость вращения ниже 1400 об/мин. Не допускается превышение значений входной скорости редукторов, указанных в таблице.

2 Скорость на выходе n2 [мин-1]
Выходная скорость n2 зависит от входной скорости n1 и передаточного числа i; вычисляется по формуле:

Коэффициент безопасности [S]

Значение коэффициента равно отношению номинальной мощности редуктора к реальной мощности электродвигателя, подсоединенного к редуктору:

S= Pn1/ P1

Редуктор

Число ступеней

Виды передач

Взаимное расположение осей входного и выходного валов

Цилиндрический

Одноступенчатый

Одна или несколько цилиндрических передач

Параллельное

Параллельное или соосное

Четырехступенчатый

Параллельное

Конический

Одноступенчатый

Одна коническая передача

Пересекающееся

Коническо-цилиндрический

Одна коническая передача и одна или несколько цилиндрических передач

Пересекающееся или скрещивающееся

Червячный

Одноступенчатый Двухступенчатый

Одна или две червячные передачи

Скрещивающееся

Параллельное

Цилиндрическо-червячный или червячно-цилиндрический

Двухступенчатый, трехступенчатый

Одна или две цилиндрические передачи и одна червячная передача

Скрещивающееся

Планетарный

Одноступенчатый двухступенчатый трехступенчатый

Каждая ступень состоит из двух центральных зубчатых колес и сателитов

Цилиндрическо-планетарный

Двухступенчатый, трехступенчатый, четырехступенчатый

Комбинация из одной или нескольких цилиндрических и планетарных передач

Параллельное или соосное

Коническо-планетарный

Двухступенчатый, трехступенчатый, четырехступенчатый

Комбинация из одной конической и планетарных передач

Пересекающееся

Червячно-планетарный

Двухступенчатый, трехступенчатый, четырехступенчатый

Комбинация из одной червячной и планетарных передач

Скрещивающееся

Волновой

Одноступенчатый

Одна волновая передача

Классификация редукторов в зависимости от расположения осей входного и выходного валов в пространстве.

Редуктор

Расположения осей входного и выходного валов в пространстве

1. С параллельными осями входного и выходного валов 1. Горизонтальное ; оси расположены в горизонтальной плоскости; оси расположены в вертикальной плоскости (с входным валом над или под выходным валом); оси расположены в наклонной плоскости
2. Вертикальное
2. С совпадающими осями входного и выходного валов (соосный) 1. Горизонтальное
2. Вертикальное
3. С пересекающимися осями входного и выходного валов 1. Горизонтальное
4. Со скрещивающимися осями входного и выходного валов 1. Горизонтальное (с входным валом над или под выходным валом)
2. Горизонтальная ось входного вала и вертикальная ось выходного вала
3. Вертикальная ось входного вала и горизонтальная ось выходного вала

Классификация редукторов в зависимости от способа крепления.

Способ крепления

Пример

На приставных лапах или на плите (к потолку или стене):

на уровне плоскости основания корпуса редуктора:

над уровнем плоскости основания корпуса редуктора:

Фланцем со стороны входного вала

Фланцем со стороны выходного вала

Фланцем со стороны входного и выходного валов

Насадкой

Конструктивные исполнения по способу монтажа.

Условные изображения и цифровые обозначения конструктивных исполнений редукторов и мотор-редукторов общемашиностроительного применения: (изделий) по способу монтажа установлены ГОСТ 30164-94.
В зависимости от конструкции редукторы и мотор-редукторы разбиты на следующие группы:

а) соосные;
б) с параллельными осями;
в) с пересекающимися осями;
г) со скрещивающимися осями.

К группе а) отнесены и изделия с параллельными осями, у которых концы входного и выходного валов направлены в противоположенные стороны, а их межосевое расстояние составляет не более 80мм.
К группам б) и в) отнесены также вариаторы и вариаторные приводы. Условные изображения и цифровые обозначения конструктивных исполнений по способу монтажа характеризуют конструктивные исполнения корпусов, а также расположение в пространстве поверхностей крепления валов или осей валов.

Первая - конструктивное исполнение корпуса (1 - на лапах, 2 - с фланцем);
Вторая - расположение поверхности крепления (1 - пол, 2 - потолок, 3 - стена);
Третья - расположение конца выходного вала (1 - горизонтальный влево, 2 - горизонтальный вправо, 3 - вертикальный вниз, 4 - вертикальный верх).

Условное обозначение изделий группы а) состоит из трех цифр:
первая - конструктивное исполнение корпуса (1 - на лапах; 2 - с фланцем); вторая - расположение поверхности крепления (1 - пол; 2 - потолок; 3 - стена); третья - расположение конца выходного вала (1 - горизонтальный влево; 2 - горизонтальный вправо; 3 - вертикальный вниз; 4 - вертикальный вверх).

Условное обозначение изделий групп б) и в) состоит из четырех цифр:
первая - конструктивное исполнение корпуса (1 - на лапах; 2 - с фланцем; 3 - навесное; 4 - насадное); вторая - взаимное расположение поверхности крепления и осей валов для группы б): 1 - параллельно осям валов; 2 - перпендикулярно осям валов; для группы в): 1 - параллельно осям валов; 2 - перпендикулярно оси выходного вала; 3 - перпендикулярно оси входного вала); третья - расположение поверхности крепления в пространстве (1 - пол; 2 - потолок; 3 - стена левая, передняя, задняя; 4 - стена правая, передняя, задняя);

четвертая - расположение валов в пространстве для группы б): 0 - валы горизонтальные в горизонтальной плоскости; 1 - валы горизонтальные в вертикальной плоскости; 2 - валы вертикальные; для группы в): 0 - валы горизонтальные; 1 - выходной вал вертикальный; 2 - входной вал вертикальный).
Условное обозначение изделий группы г) состоит из четырех цифр:
первая - конструктивное исполнение корпуса (1 - на лапах; 2 - с фланцем; 3 - навесное; 4 - насадное);
вторая - взаимное расположение поверхности крепления и осей валов (1 - параллельно осям валов, со стороны червяка; 2 - параллельно осям валов, со стороны колеса; 3, 4 - перпендикулярно оси колеса; 5, 6 - перпендикулярно оси червяка);
третья - расположение валов в пространстве (1 - валы горизонтальные; 2 - выходной вал вертикальный: 3 - входной вал вертикальный);
четвертая - взаимное расположение червячной пары в пространстве (0 - червяк под колесом; 1 - червяк над колесом: 2 - червяк справа от колеса; 3 - червяк слева от колеса).
Изделия навесного исполнения устанавливают полым выходным валом, а корпус фиксируют в одной точке от проворота реактивным моментом. Изделия насадного исполнения устанавливают полым выходным валом, а корпус крепят неподвижно в нескольких точках.
В мотор-редукторах на изображении конструктивного исполнения по способу монтажа должно быть дополнительное упрощенное изображение контура двигателя по ГОСТ 20373.
Примеры условных обозначений и изображений:
121 - соосный редуктор, конструктивное исполнение корпуса на лапах, крепление к потолку, валы горизонтальные, выходной вал слева (рис. 1, а);
2231 - редуктор с параллельными осями, исполнение корпуса с фланцем, поверхность крепления перпендикулярна осям валов, крепление к левой стене, валы горизонтальные в вертикальной плоскости (рис. 1, б);
3120 - редуктор с пересекающимися осями, исполнение корпуса навесное, поверхность крепления параллельна осям валов, крепление к потолку, валы горизонтальные (рис. 1, в);
4323 - редуктор со скрещивающимися осями, исполнение корпуса насадное, поверхность крепления перпендикулярна оси колеса, выходной вал вертикальный, червяк слева от колеса (рис. 1, г). Символом LLLL обозначена точка фиксации изделия от проворота реактивным моментом и крепление полого выходного вала на валу рабочей машины.

Министерство образования и науки Российской Федерации.

Федеральное агентство по образованию.

Государственное образовательное учреждение высшего профессионального образования.

Самарский государственный технический университет.

Кафедра: «Прикладная механика»

Курсовой проект по механике

Студент 2 – ХТ – 2

Руководитель: к. т. н., доцент


Техническое задание №65.

Коническая передача.

Частота вращения вала электродвигателя:

.

Вращающий момент на выходном валу редуктора:

.

Частота вращения выходного вала:

.

Cрок службы редуктора в годах:

.

Коэффициент загрузки редуктора в течение года:

.

Коэффициент загрузки редуктора в течение суток:

.

1. Введение_________________________________________________________4

2. Кинематический и силовой расчёт привода__________________________4

2.1 Определение частот вращения валов редуктора______________________4

2.2. Расчёт чисел зубьев колёс________________________________________4

2.3. Определение фактического передаточного отношения_______________5

2.4. Определение КПД редуктора_____________________________________5

2.5. Определение номинальных нагрузочных моментов на каждом валу, схема механизма___________________________________________________5

2.6. Расчёт потребной мощности и выбор электродвигателя, его размеры___5

3. Выбор материалов и расчёт допускаемых напряжений_________________7

3.1. Определение твёрдости материалов, выбор материала для зубчатого колеса ____________________________________________________________7

3.2. Расчет допускаемых напряжений _________________________________7

3.3. Допускаемые напряжения на контактную выносливость______________7

3.4. Допускаемые напряжения на изгибную выносливость________________8

4. Проектный и проверочный расчёт передачи__________________________8

4.1. Вычисление предварительного делительного диаметра шестерни______8

4.2. Вычисление предварительного модуля передачи и уточнение его по ГОСТу___________________________________________________________8

4.3. Расчёт геометрических параметров передачи_______________________8

4.4. Проверочный расчёт передачи___________________________________9

4.5. Усилия в зацеплении___________________________________________9

5. Проектный расчёт вала и выбор подшипников ______________________12

6. Эскизная компоновка и расчёт элементов конструкции_______________12

6.1. Расчёт зубчатого колеса________________________________________12

6.2. Расчёт элементов корпуса______________________________________13

6.3. Расчёт мазеудерживающих колец_______________________________13

6.4. Расчёт крышки подшипников__________________________________13

6.5. Выполнение компоновочного чертежа__________________________13

7. Подбор и проверочный расчёт шпоночных соединений _______________14

8. Проверочный расчёт вала на усталостную выносливость______________15

9. Проверочный расчёт подшипников выходного вала на долговечность___18

10. Подбор и расчет соединительной муфты___________________________19

11. Смазывание редуктора__________________________________________19

12. Сборка и регулировка основных узлов редуктора___________________20

13. Список используемой литературы________________________________22

14. Приложения__________________________________________________23


Введение.

Редуктором называют механизм, состоящий из зубчатых или червячных передач, выполненный в виде отдельного агрегата и служащий для передачи вращения от вала двигателя к валу рабочей машины.

Назначение редуктора – понижение угловой скорости и соответственно повышение вращающего момента ведомого вала по сравнению с ведущим.

Редуктор состоит из корпуса (литого чугунного или сварного стального), в котором помещают элементы передачи – зубчатые колеса, валы, подшипники и т.д. В отдельных случаях в корпусе редуктора размещают также устройства для смазывания зацеплений и подшипников или устройства для охлаждения.

Редукторы классифицируют по следующим основным признакам: типу передачи (зубчатые, червячные или зубчато-червячные); числу ступеней (одноступенчатые, двухступенчатые и т.д.); типу зубчатых колес (цилиндрические, конические, коническо-цилиндрические и т.д.); относительному расположению валов редуктора в пространстве (горизонтальные, вертикальные); особенностям кинематической схемы (развернутая, соосная, с раздвоенной ступенью и т.д.).

Конические редукторы применяют для передачи движения между валами, оси которых пересекаются обычно под углом 90. Передачи с углами, отличными от 90 , встречаются редко.

Наиболее распространённый тип конического редуктора - редуктор с вертикально расположенным тихоходным валом. Возможно исполнение редуктора с вертикально расположенным быстроходным валом; в этом случае привод осуществляется от фланцевого электродвигателя

Передаточное число u одноступенчатых конических редукторов с прямозубыми колёсами, как правило, не выше 3; в редких случаях u = 4.При косых или криволинейных зубьях u = 5 (в виде исключения u = 6.3).

У редукторов с коническими прямозубыми колёсами допускаемая окружная скорость (по делительной окружности среднего диаметра) v ≤ 5 м/с. При более высоких скоростях рекомендуют применять конические колёса с круговыми зубьями, обеспечивающими более плавное зацепление и большую несущую способность.


2 Кинематический и силовой расчет привода.

2.1 Определение частот вращения валов редуктора:

.

Частота вращения первого (входного) вала:

.

Частота вращения второго (выходного) вала:

.

2.2 Расчёт чисел зубьев передач.

Расчётное число зубьев шестерни

определяют в зависимости от величины передаточного отношения передачи:

Значение

округляют до целого числа по правилам математики: .

Расчётное число зубьев колеса

, необходимое для реализации передаточного числа , определяют по зависимости: .

Значение

округляют до целого числа : .

2.3 Определение фактического передаточного отношения:

.

2.4 Определение КПД редуктора.

Для конического редуктора

.

Вращающий (нагрузочный) момент на выходном валу редуктора:

.

На входном валу:

.

2.5 Определение номинальных нагрузочных моментов на каждом валу, схема механизма.

Мощность на выходном валу редуктора, кВт:

кВт , где: - вращающий момент выходного вала, - частота вращения выходного вала.

Расчетная мощность электродвигателя.

Требуемая мощность привода определяется по формуле :

где Т 2 – момент на выходном валу (Нм);

n 2 – частота вращения выходного вала (об/мин).

      Определение требуемой мощности электродвигателя.

Требуемая мощность электродвигателя определяется по формуле

где η редуктора – КПД редуктора;

Согласно кинематической схеме заданного привода КПД редуктора определяется по зависимости:

η редуктора = η зацепления η 2 подшипников η муфты ,

где η зацепления – КПД зубчатого зацепления; принимаем η зацепления = 0,97 ;

η подшипников – КПД пары подшипников качения; принимаем η подшипников = 0,99 ;

η муфты – КПД муфты; принимаем η муфты = 0,98 .

1.3. Определение частоты вращения вала электродвигателя.

Определяем диапазон оборотов, в котором может находится синхронная частота вращения электродвигателя по формуле:

n с = u n 2 ,

где u – передаточное число ступени; выбираем диапазон передаточных чисел, который рекомендуется для одной ступени цилиндрической зубчатой передачи в интервале от 2 – 5 .

Например : n с = u n 2 = (2 – 5)200 = 400 – 1000 об/мин.

1.4. Выбор электродвигателя.

По величине требуемой мощности электродвигателя Р потр. (с учетом, что Р эл.дв. Р потр. ) и синхронной частоте вращения вала n с выбираем электродвигатель :

серия …..

мощность Р = ……кВт

синхронная частота вращения n с = …..об/мин

асинхронная частота вращения n 1 = …..об/мин.

Рис. 1. Эскиз электродвигателя.

1.5. Определение передаточного числа редуктора.

По расчетному значению передаточного числа выбираем стандартное значение, с учетом погрешности, из ряда передаточных чисел . Принимаем u ст. = ….. .

1.6. Определение, частот вращения и крутящих моментов на валах редуктора.

Частота вращения входного вала n 1 = ….. об/мин.

Частота вращения выходного вала n 2 = ….. об/мин.

Крутящий момент на колесе выходного вала:

Крутящий момент на шестерне входного вала:

2. РАСЧЕТ ЗАКРЫТОЙ ЗУБЧАТОЙ ПЕРЕДАЧИ.

2.1. Проектировочный расчет.

1. Выбор материала колес.

Например :

Шестерня Колесо

Н B = 269…302 Н B = 235…262

Н B 1 = 285 Н B 2 = 250

2. Определяем допускаемые контакты напряжения для зубьев шестерни и колеса :

где H lim – предел выносливости контактной поверхности зубьев, соответствующий базовому числу циклов переменных напряжений; определяется в зависимости от твердости поверхности зубьев или задается числовое значение ;

Например : H lim = 2HB +70.

S H – коэффициент безопасности; для зубчатых колес с однородной структурой материала и твердость поверхности зубьев HB  350 рекомендуется S H = 1,1 ;

Z N – коэффициент долговечности; для передач при длительной работе с постоянным режимом нагружения рекомендуется Z N = 1 .

Окончательно за допускаемое контактное напряжение принимается меньшее из двух значений допускаемых контактных напряжений колеса и шестерни [ Н ] 2 и [ Н ] 1:[ Н ] = [ Н ] 2 .

3. Определяем межосевое расстояние из условия контактной выносливости активных поверхностей зубьев .

где Е пр – приведенный модуль упругости материалов колес; для стальных колес можно принять Е пр = 210 5 МПа ;

ba – коэффициент ширины колеса относительно межосевого расстояния; для колес расположенных симметрично относительно опор рекомендуется ψ ba = 0,2 – 0,4 ;

К H – коэффициент концентрации нагрузки при расчетах по контактным напряжениям.

Для определения коэффициента К H необходимо определить коэффициент относительной ширины зубчатого венца относительно диаметра ψ bd : ψ bd = 0,5ψ ba (u 1)=….. .

По графику рисунка ….. с учетом расположения передачи относительно опор, при твердости НВ  350, по величине коэффициента ψ bd находим: К H = ….. .

Вычисляем межосевое расстояние:

Например :

Для редукторов межосевое расстояние округляем по ряду стандартных межосевых расстояний или ряду Ra 40 .

Назначаем а W = 120 мм.

4. Определяем модуль передачи.

m = (0,01 – 0,02)а W = (0,01 – 0,02)120 = 1,2 – 2,4 мм.

По ряду модулей из полученного интервала назначаем стандартное значение модуля: m = 2 мм.

5. Определяем число зубьев шестерни и колеса.

Суммарное число зубьев шестерни и колеса определяем из формулы: а W = m (z 1 +z 2 )/2;

отсюда z = 2а W /m = …..; принимаем z = ….. .

Число зубьев шестерни: z 1 = z /(u 1) = …..

Для устранения подрезания зубъев z 1 z min ; для прямозубого зацепления z min = 17 . Принимаем z 1 = ….. .

Число зубьев колеса: z 2 = z - z 1 = .. Рекомендуется z 2  100 .

6. Уточняем передаточное число.

Определяем фактическое передаточное число по формуле:

Погрешность значения фактического передаточного числа от расчетного значения:

Условие точности проектирования выполняется .

За передаточное число редуктора принимаем u факт = ….. .

7. Определяем основные геометрические размеры шестерни и колеса.

Для колес нарезанных без смещения инструмента:

    диаметры начальных окружностей

d W = d

    угол зацепления и угол профиля

α W = α = 20º

    делительные диаметры

d 1 = z 1 m

d 2 = z 2 m

    диаметры вершин зубьев

d а1 = d 1 +2 m

d а2 = d 2 +2 m

    диаметры впадин

d f 1 = d 1 –2,5 m

d f 2 = d 2 –2,5 m

    высота зуба

h = 2,25 m

    ширина зубчатого венца

b w = ψ ba а W

    ширина венца шестерни и колеса

b 2 = b w

b 1 = b 2 + (3 – 5) = ….. . Принимаем b 1 = ….. мм.

    проверяем величину межосевого расстояния

a w = 0,5 (d 1 + d 2 )

Алгоритм №1

Расчета закрытых зубчатых

Цилиндрических передач

А л г о р и т м

расчетазакрытой зубчатой прямозубой и косозубой

цилиндрической передачи

Техническое задание должно содержать следующую информацию:

Мощность на валу шестерни..................P 1 , квт;

Частота вращения шестерни.................. n 1 , об/мин;

Частота вращения колеса....................... n 2 , об/мин;

(могут быть заданы другие параметры, определя-

ющие предыдущие);

Реверсивность передачи;

Срок службы передачи............................ t г, лет;

Коэффициент годового использования....K г;

Коэффициент суточного использования...K с;


- гистограмма нагружения:

Пункт1. Подготовка расчетных параметров.

1.1. Предварительное определение передаточного числа

Согласовать со стандартными значениями (табл.1.1). Выбрать ближайшее стандартное значение U .

Действительная частота вращения выходного вала

Об/мин (2)

Отклонение от значения технического задания

(3)

1.2. Крутящий момент на валу шестерни

1.3. Время работы передачи

t = t г (лет)×365(дней)×24(часа)×К г×К с, час. (5)

Пункт2. Выбор материала. Определение допускаемых напряжений для проектного расчета.

2.1. Выбор материала (табл. 1.2). Дальнейшее изложение будет параллельно: для прямозубой передачи - в левой колонке, для косозубой - в правой колонке.

В соответствии с выбранным материалом и поверхностной твердостью главным расчетным критерием является контактная прочность.

2.2. Допускаемые усталостные контактные напряжения зубчатого колеса.



Расчет по этим допускаемым напряжениям предотвращает усталостное выкрашивание рабочих поверхностей в течении заданного срока службы t .

(6)

где Z R - коэффициент, учитывающий шероховатость поверхности (табл.1.3).

Z V - коэффициент, учитывающий окружную скорость. При заданных значениях частот вращения валов можно предварительно предположить, в каком интервале лежит окружная скорость передачи (табл.1.3).

S H - коэффициент запаса прочности (табл.1.3).

Z N - коэффициент долговечности

(7)

N HG - базовое число циклов

N GH = (HB ) 3 £ 12×10 7 . (8)

Для шестерни косозубой передачи, если она имеет HB >350, пересчитать единицы HRC в единицы HB (табл. 1.4).

N HE

N HE 1 = 60×n 1 ×t ×e H . (9)

e H - коэффициент эквивалентности, который определяется по гис­тограмме нагружения

, (10)

где T max - наибольший из длительно действующих моментов. В нашем случае это будет момент T , действующий t 1 часть общего времени работы t ; тогда q 1 =1.

T i - каждая последующая ступень нагрузки, действующая в тече­нии времени t i =t i ×t . Первая ступень гистограммы, равная по нагрузке T пик =q пик ×T , при подсчёте числа циклов не учитывается. Эта нагрузка при малом числе циклов оказывает упрочняющее действие на поверхность. Ее используют при проверке статической прочности.

m - степень кривой усталости, равная 6. Таким образом,

Коэффициент эквивалентности показывает, что момент T , действующей в течении e H ×t времени, оказывает такое же усталостное воздействие как и реальная нагрузка, соответствующая гистограмме нагружения в течении времени t .

s Hlim - предел контактной выносливости зубчатого колеса при достижении базового числа циклов N HG (табл.1.5).

Расчетные допускаемые контактные напряжения дляпередачи

Пункт3. Выбор расчетных коэффициентов.

3.1.Выбор коэффициента нагрузки. Коэффициент нагрузки для предварительных расчётов выбира­ется из интервала

K H = 1,3...1,5. (16)

Если в рассчитываемой передаче зубчатые колёса расположены симметрично относительно опор, K H выбирается ближе к нижнему пределу. Для косозубых передач K H берётся меньше из-за большей плавности работы и, следовательно, меньшей динамической нагрузки.

3.2. Выбор коэффициента ширины зубчатого колеса (табл.1.6). Для редукторных передач рекомендуется:

– для многоступенчатых y а =0,315…0,4;

– для одноступенчатых y а =0,4…0,5;

верхний предел выбирается для косозубых передач;

– для шевронных передач y а =0,630…1,25.

Пункт4. Проектный расчет передачи.

4.1. Определение межосевого расстояния.

Для закрытой передачи, если оба или хотя бы одно из колёс име­ет твёрдость меньше 350 ед., проектный расчёт проводится на уста­лостную контактную прочность для предотвращения выкрашивания в течение заданного срока службы t .

, мм. (17)

Здесь T 1 - момент на валушестерни в Нм.

Числовой коэффициент:

Ka = 450; Ka = 410.

Вычисленное межосевое расстояние принимается ближайшим стандартным по таблице 1.7.

4.2. Выбор нормального модуля. Для зубчатых колёс при HB £350 хо­тя бы для одного колеса рекомендуется выбрать нормальный модуль из следующего соотношения

. (18)

Выписать все стандартные значения нормального модуля (табл. 1.8), входящие в интервал (18) .

В первом приближении следует стремиться к выбору минимального модуля, однако для силовых передач модуль меньше 1.25 мм принимать не рекомендуется. При выборе модуля для прямозубой передачи, чтобы избежать модифицирования передачи необходимо, чтобы суммарное число зубьев

получалось целым числом. Тогда

Если дробное число его округляют до целого, а число зубьев колеса

4.3. Для косозубой передачи числа зубьев

Числа зубьев следует округлять до целого числа.

4.5. Делительные диаметры

Вычислять диаметры с точностью до третьего знака после запятой.

Выполнить проверку

Для немодифицированной передачи и при высотной модификации должно быть с точностью до третьего знака после запятой.

4.6. Диаметры выступов

4.7. Диаметры впадин

(26)

4.8. Расчетная ширина колеса

В передаче с разнесенной парой ширина каждого колеса разнесенной пары

В шевронной передаче полная ширина колеса

где C - ширина средней канавки для выхода инструмента, выбирается из таблицы 1.16. Диаметр по канавке меньше диаметра впадины на 0,5×m .

4.9. Торцовая степень перекрытия

. (31)

4.10. Окружная скорость

Если скорость отличается от ориентировочно принятой в п. 2.2 при определении коэффициента K V , следует вернуться к п. 2.2 и уточнить допускаемые напряжения.

По окружной скорости выбрать степень точности передачи (табл. 1.9). Для передач общего машиностроения при скоростях не более 6 м/с для прямозубых и не более 10 м/с для косозубых выбирается 8 сте­пень точности. Шестерня косозубой передачи может быть обработана по 7 степени точности, и после поверхностной закалки ТВЧ возникающие деформации переведут параметры шестерни в 8 степень точности.

Пункт5. Проверочные расчеты.

5.1. Для проверочных расчётов как по контактной, так и по из­гибной прочности определим коэффициенты нагрузки.

. (33)

. (34)

K HV и K FV - коэффициенты внутренней динамической нагрузки. Они выбираются из таблицы 1.10. Если значение скорости попадает в промежутки диапазона, коэффициент подсчитывается интерполяцией.

K H b и K F b - коэффициенты концентрации нагрузки (неравномерности распределения нагрузки по длине контактных линий). Их значения вы­бираются из таблицы 1.11 интерполяцией.

K H a и K F a - коэффициенты распределения нагрузки между зубьями. Выбирается из таблицы 1.12 интерполяцией.

5.2. Проверка по контактным напряжениям

. (35)

Z E - коэффициент материала. Для стали

Z E = 190.

Z e - коэффициент учёта суммарной длины контактных линий

Прямозубые ; (36) Косозубые ; (37)

Z H - коэффициент формы сопряжённых поверхностей. Выбирается из таблицы 1.13 интерполяцией.

F t - окружное усилие

Отклонение

. (39)

Знак (+) показывает недогрузку, знак (-) - перегрузку.

Р Е К О М Е Н Д А Ц И И

Как недогрузка, так и перегрузка допускается не более 5%.

Если Ds H выйдет за пределы ±20%, тогда для редукторной передачи со стандартными параметрами следует изменить межосевое расстояние a W и вернуться к пункту 4.2.

Если Ds H выйдет за пределы ±12%:

При недогрузке - уменьшить y a и вернуться к пункту 4.8.

При перегрузке - увеличить y a , не превышая рекомендованных значений для данного вида передачи и вернуться к пункту 4.8. Можно изменить в рекомендованных пре­делах твёрдость поверхности зуба и вернуться к пункту 2.

Если Ds H будет менее 12%, можно допускаемые напряжения скоррек­тировать термообработкой и вернуться к пункту 2.

5.3. Проверка по усталостным напряжениям изгиба.

5.3.1. Допускаемые напряжения изгиба

. (40)

Проверка по этим напряжениям предотвращает появление усталостных трещин у корня зуба в течении заданного срока службы t и, как следствие, поломку зуба.

Y R - коэффициент шероховатости переходной кривой (табл. 1.14).

Y X - масштабный фактор (табл. 1.14).

Y d - коэффициент чувствительности материала к концентрации нап­ряжения (табл. 1.14).

Y A - коэффициент реверсивности нагрузки (табл. 1,14).

Y N - коэффициент долговечности. Рассчитывается отдельно для шестерни и колеса

N FG - базовое число циклов. Для стальных зубьев

N FG = 4×10 6 . (42)

m - степень кривой усталости. В предыдущей и последующих формулах расчета усталостной изгибной прочности:

Для улучшенных сталей

для закалённых сталей

N FE 1 - эквивалентное число циклов шестерни

N FE 1 = 60×n 1 ×t ×e F . (43)

e F - коэффициент эквивалентности

. (44)

В соответствии с гистограммой нагружения, как и при расчёте на контактную прочность,

Эквивалентное число циклов колеса

S F иs Flim - коэффициент запаса прочности и предел выносливости зуба выбираются из таблицы 1.15.

5.3.2. Рабочие напряжения изгиба. Определяется отдельно для шестерни и колеса

. (47)

Y FS - коэффициент формы зуба

. (48)

X - коэффициент сдвига инструмента.

Z V - эквивалентное число зубьев

Y e - коэффициент, учитывающий перекрытие зубьев в зацеплении

Y b - коэффициент угла наклона зуба

. (53)

Если Y b получился меньше 0,7, следует принять

Y b = 0,7

Рабочие напряжения определяются для каждого зубчатого колеса или для того, у которого меньше отношение

Действительный запас усталостной изгибной прочности

Значение коэффициента запаса усталостной изгибной прочности показывает степень надёжности в отношении вероятности поломки зуба. Чем больше этот коэффициент, тем ниже вероятности усталостной поломки зуба

5.4. Проверка на контактную статическую прочность.

. (56)

T max =

[s] Hmax - допускаемые статические контактные напряжения.

Для улучшенных зубьев

. (57)

Эти допускаемые напряжения предотвращают пластические деформации поверхностных слоев зуба.

Предел текучести s T можно выбрать из таблицы 1.2.

Для поверхностно упрочненных зубьев, в том числе, закалённых ТВЧ

. (58)

Эти допускаемые напряжения предотвращают растрескивание поверхностных слоев зуба.

5.5. Проверка изгибной статической прочности. Проверка делается для шестерни и колеса

. (59)

Допускаемые статические напряжения изгиба. Для улуч­шенных и поверхностно упрочнённых зубьев

. (60)

Проверка по этим допускаемым напряжениям предотвращает мгновенную поломку зуба при перегрузке передачи.

Таблица 1.1

Таблица 1.2

Марка стали Термообра- ботка Размер сечения, мм, не более Твердость поверхности HB или HRC Предел прочности s b ,Мпа Предел теку- чести s Т, Мпа
Улучшение HB 192...228
Нормализация Улучшение HB 170...217 HB 192...217
Нормализация Улучшение HB 179...228 HB 228...255 ...800
40Х Улучшение Улучшение Улучшение 100...300 300...500 HB 230...280 HB 163...269 HB 163...269
40ХН Улучшение Улучшение Закалка 100...300 HB 230...300 HB ³241 HRC 48...54
20Х Цементация HRC 56...63
12ХН3А Цементация HRC 56...63
38ХМЮА Азотирование - HRC 57...67

Примечание. Под размером сечения подразумевается радиус заготовки вал-шестерни или толщина обода колеса.

Таблица 1.3

Таблица 1.4

HRC
HB

Таблица 1.5

Таблица 1.6

Таблица 1.8

Таблица 1.9

Таблица 1.10

Сте- пень точ- ности Твердость поверх- ностей зубьев Вид пере- дачи K HV K FV
Окружная скорость V , м/с
HB 1 иHB 2 >350 прям 1,02 1,12 1,25 1,37 1,5 1,02 1,12 1,25 1,37 1,5
косоз 1,01 1,05 1,10 1,15 1,20 1,01 1,05 1,10 1,15 1,20
HB 1 или HB 2 £350 прям 1,04 1,20 1.40 1,60 1,80 1,08 1,40 1,80 - -
косоз 1,02 1,08 1,16 1,24 1,32 1,03 1,16 1,32 1,48 1,64
HB 1 иHB 2 >350 прям 1,03 1,15 1,30 1,45 1,60 1,03 1,15 1,30 1,45 1,60
косоз 1,01 1,06 1,12 1,18 1,24 1,01 1,06 1,12 1,18 1,24
HB 1 или HB 2 £350 прям 1,05 1,24 1,48 1,72 1,96 1,10 1,48 1,96 - -
косоз 1,02 1,10 1,19 1,29 1,38 1,04 1,19 1,38 1,57 1,77
HB 1 иHB 2 >350 прям 1,03 1,17 1,35 1,52 1,70 1,03 1,17 1,35 1,52 1,70
косоз 1,01 1,07 1,14 1,21 1,28 1,01 1,07 1,14 1,21 1,28
HB 1 или HB 2 £350 прям 1,06 1,28 1,56 1,84 - 1,11 1,56 - - -
косоз 1,02 1,11 1,22 1,34 1,45 1,04 1,22 1,45 1,67 -

Таблица 1.11

Коэффициент K H b при HB 1 £350 или HB 2 £350
Конструкция передачи Коэффициент y d =b W /d 1
0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0
Консольная шестерня на шариковых подшипниках 1,09 1,19 1,3 - - - - - - -
Консольная шестерня на роликовых подшипниках 1,07 1,13 1,20 1,27 - - - - - -
Быстроходная пара двухступенчатого редуктора разверн- той схемы 1,03 1,06 1,08 1,12 1,16 1,20 1,24 1,29 - -
Тихоходная пара двухступенчатого соосного редуктора 1,02 1,03 1,06 1,08 1,10 1,13 1,16 1,19 1,24 1,30
Тихоходная пара двухступенчатого редуктора разверну- той и соосной схемы 1,02 1,03 1,04 1,06 1,08 1,10 1,13 1,16 1,19 1,25
Одноступенчатый цилиндрический редуктор 1,01 1,02 1,02 1,03 1,04 1,06 1,08 1,10 1,14 1,18
Тихоходная пара двухступенчатого редуктора с разне- сенной быстроход- ной ступенью 1,01 1,02 1,02 1,02 1,03 1,04 1,05 1,07 1,08 1,12
Коэффициент K F b =(0,8...0,85)×K H b ³1

Таблица 1.12

Таблица 1.14

Коэф- фици-ент Наименование коэффициента Значение коэффициента
Y R Коэффициент шероховатости переходной кривой Зубофрезерование и шлифование Y R =1. Полирование Y R =1,05...1,20. Более высокие значения для улучшения и закалки ТВЧ.
Y X Коэффициент размеров (масштабный фактор) Сталь: объемная термообработка Y X =1,03 - 0,006×m ; 0,85£Y X £1. Поверхностная закалка, азотирование Y X =1,05 - 0,005×m ; 0,8£Y X £1. Чугун со сфероидальным графитом Y X =1,03 - 0,006×m ; 0,85£Y X £1. Серый чугун Y X =1,075 - 0,01×m ;0,7£Y X £1.
Y d Коэффициент чувствительности материала к концентрации напряжений Y d =1,082 - 0,172×lg m.
Продолжение таблицы 1.14
Y A Коэффициент реверсивности При нереверсивной работе Y A =1. При реверсивной работе с равным режимом нагружения в обе стороны: для нормализованной и улучшенной стали Y A =0,65; для закаленной стали Y A =0,75; для азотированной стали Y A =0,9.

Таблица 1.15

Термическая обработка Поверхностная твердость Марки стали s Flim , Мпа S F при вероятности неразрушения
нормальной повы-шенной
Нормализа- ция, улучше- ние 180...350 HB 40.45,40Х, 40ХН, 35ХМ 1,75×(HB ) 1,7 2,2
Объемная закалка 45...55 HRC 40Х,40ХН, 40ХФА 500...550 1.7 2,2
Закалка ТВЧ сквозная 48...52 HRC 40Х,35ХМ, 40ХН 500...600 1,7 2,2
Закалка ТВЧ поверхностная 48...52 HRC 40Х,35ХМ, 40ХН 600...700 1,7 2,2
Азотирование 57...67 HRC 38ХМЮА 590...780 1,7 2,2
Цементация 56...63 HRC 12ХН3А 750...800 1,65...1,7 2...2,2

Таблица 1.16

Модуль Угоп наклона зуба b 0 Модуль Угол наклона зуба b 0
m , мм m , мм
Ширина канавки C , мм Ширина канавки C , мм
2,5
3,0
3,5