Топливный элемент (Fuel Cell) — преобразователь химической потенциальной энергии (энергии молекулярных связей) в энергию электричества. Устройство содержит рабочую ячейку, где топливом выступает газообразный водород (H 2) и кислород (O 2). Продуктами реакции, происходящей внутри ячейки, являются вода, электричество и тепло. Технологически топливные элементы следует рассматривать более совершенными системами по сравнению с двигателями внутреннего сгорания, электростанциями сжигания угля и даже атомными электростанциями, работа которых сопровождается выбросом вредных побочных продуктов.

Поскольку кислород в большом количестве присутствует в атмосфере, остаётся только добавить к топливному элементу водород. Это вещество достаточно легко получить процессом электролиза в одноимённом аппарате, именуемом — электролизёр.

Что такое электролизёр и как работает?

Электрохимическое устройство, где для разделения молекул на составляющие атомы используется электрический ток. Электролизёры широко используются под разделение воды на водород и кислород.

Методика электролиза является наиболее перспективным способом производства водорода очень высокой чистоты (99,999%) благодаря высокой эффективности и быстрому динамическому отклику по сравнению с некоторыми другими методами.

Водород, полученный электролизом, качественно чист и потому удачно подходит для применения в топливном элементе.

Какие разработаны конструкции электролизёров?

Подобно топливным элементам, электролизёры построены на основе двух электродов и размещённого между электродами ионопроводящего электролита. Такие аппараты различаются по типу используемого электролита.

Структурная схема электролизёра и внешний вид одного из промышленных вариантов: 1 – слой катализатора; 2 – диффузионный слой газа; 3 – биполярная пластина; 4 – протонообменная мембрана; 5 — уплотнение

Разработаны несколько различных типов электролизёров, уже используемых на практике либо находящихся на стадии внедрения. Двумя наиболее распространёнными типами электролизёров, производящих водород, являются:

  1. Щелочной электролизёр.
  2. Мембранный электролизёр.

Щелочной электролизёр

Этот вид устройства работает на жидком каустическом электролите (обычно 30% KOH). Щелочные электролизёры строятся на недорогих металлах (), выступающих в качестве катализатора и обладают достаточно надежной структурой.

Щелочные электролизеры производят водород чистотой 99,8%, функционируют при относительно низкой температуре и показывают высокий уровень производительности. Рабочее давление в установках может достигать 30 АТИ. При работе поддерживается низкая плотность тока.

Протонообменный мембранный (ПОМ) электролизер

Катализатор содержит пористую структуру, поэтому площадь поверхности платины максимально подвергается воздействию водорода или кислорода. Сторона катализатора, покрытая платиной, обращена к ПОМ.

Как работает ячейка топливного элемента?

Своеобразным «сердцем» ячейки топливного элемента является протонообменая мембрана (ПОМ). Этот компонент позволяет протонам проходить практически беспрепятственно, но электроны блокирует.

Таким образом, когда водород попадает в катализатор и расщепляется на протоны и электроны, протоны направляются прямиком к стороне катода, а электроны следуют через внешнюю электрическую цепь.

Соответственно, по пути электроны выполняют полезную работу:

Только проследовав такой путь, электроны объединяются с протонами и кислородом на другой стороне ячейки с последующим производством воды.


Полноценная система из нескольких топливных ячеек: 1 – газовый ресивер; 2 – радиатор охлаждения с вентилятором; 3 – компрессор; 4 – опорный фундамент; 5 – топливный элемент в сборе из нескольких ячеек; 6 – модуль промежуточного хранилища

Все эти реакции происходят в так называемом стеке одной ячейке. На практике обычно используется целая системы вокруг основного компонента, которая представляет собой стек из нескольких ячеек.

Стек встраивается в модуль, состоящий из частей:

  • управление топливом, водой и воздухом,
  • холодильное оборудование,
  • программное обеспечение для управления хладагентом.

Этот модуль затем интегрируется в полную систему, которую допустимо использовать для разных применений.

По причине высокого энергетического содержания водорода и высокой эффективности топливных элементов (55%), технологию допустимо использовать в разных областях.

Например, в качестве резервного питания для производства электроэнергии, когда нарушается работа основной электрической сети.

Очевидные преимущества технологии

Преобразуя химическую потенциальную энергию непосредственно в электрическую энергию, топливные элементы исключают образование «тепловых узких мест» (2-й закон термодинамики).

Следовательно, по своей природе эта технология видится более эффективной по сравнению с привычными двигателями внутреннего сгорания.

Так, схема ДВС изначально преобразует химическую потенциальную энергию в тепло, и только затем получается механическая работа.

Прямые выбросы топливных элементов — это простая вода и некоторое количество тепла. Здесь отмечается существенное улучшение по сравнению с теми же двигателями внутреннего сгорания, выделяющими, кроме всего прочего, ещё и парниковые газы.

Топливные элементы характерны отсутствием движущихся частей. Подобные конструкции всегда отличались повышенной надёжностью по отношению к традиционным двигателям.

Водород производится экологически безопасным способом, в то время как добыча и переработка нефтепродуктов являются очень опасными с точки зрения технологического производства.

Когда-то в будущем, о начале нашего века возможно скажут, что растущие цены на нефть и беспокойство об окружающей среде привели к резкому расширению кругозора автопроизводителей и заставили их разрабатывать и внедрять все новые и новые виды топлива и двигателей.

Одним из этих видов топлива будут называть водород. Как известно, при соединении водорода и кислорода получается вода, а значит, если поставить этот процесс в основу двигателя автомобиля, то выхлопом будет не смесь опасных газов и химических элементов, а обычная вода.

Не смотря на некоторые технические сложности, связанные с использованием водородных топливных элементов (ТЭ), автопроизводители не собираются сдаваться и уже разрабатывают свои новые модели с водородом в качестве топлива. На Франкфуртском автосалоне 2011 года можно было видеть как один из флагманов автоиндустрии, Daimler AG представила публике несколько прототипов Mercedes-Benz с водородным двигателем. В этом же году корейская Hyndai объявила, что откажется от разработок электромобилей и сконцентрируется на разработке автомобилей, которые будут использовать водородные топливные элементы.

Не смотря на это активное развитие, не так много людей точно представляют себе, что именно представляют собой эти водородные ТЭ и что у них внутри.

Для того, чтоб прояснить ситуацию, давайте обратимся к истории водородных топливных элементов.

Первым, кто теоретически описал возможность создания водородного ТЭ, был немец Christian Friedrich Schönbein. В 1838 году он описал принцип в одном из научных журналов того времени.

Годом позже. В 1939, судья из Уэльса, сэр Sir William Robert Grove создал и продемонстрировал практически работающую водородную батарею. Но заряда, производимого батареей, было недостаточно, чтоб изобретение получило широкое употребление.

Термин «топливный элемент» был впервые использован в 1889 исследователями Ludwig Mond и Charles Langer, которые совершили попытку создать работающий ТЭ с использованием воздуха и коксового газа. По другой версии, первым, кто использовал термин «топливный элемент», был William White Jaques. Он также был первым, кто использовал фосфорную кислоту в электролитной ванне.

В 1920-х годах исследования, проведенные в Германии, открыли пути использования карбонатного цикла и твердооксидных топливных элементов, которыми пользуются сейчас.

В 1932 инженер Francis T Bacon начал свое исследование водородных ТЭ. До него, исследователи использовали пористые электроды из платины и серную кислоту в электролитной ванне. Платина делала производство очень дорогим, а серная кислота создавала дополнительные сложности из-за своей едкости. Бэйкон заменил дорогую платину на никель, а серную кислоту - на менее едкий щелочной электролит.

Бэйкон постоянно совершенствовал свою разработку и в 1959 году смог представить публике 5-киловаттный топливный элемент, который был способен снабжать энергией сварочный аппарат. Исследователь назвал свой ТЭ «Bacon Cell».

В октябре того же 1959 года Harry Karl Ihrig продемонстрировал трактор мощностью в 20 лошадиных сил, который стал первым в мире транспортным средством, получавшим питание от топливного элемента.

В 1960-х годах американская General Electric использовала принцип работы топливного элемента Бэйкона и разработала систему генерации электроэнергии для космических программ NASA Gemini и Apollo. NASA просчитали, что использовать ядерный реактор было бы слишком дорого, а обычные аккумуляторы или солнечные батареи требовали слишком много пространства. Кроме того, водородные топливные элементы могли одновременно снабжать корабль электроэнергией, а экипаж - водой.

Первый автобус на водородном ТЭ был построен в 1993 году. В 1997 году автопроизводители Daimler Benz и Toyota представили свои прототипы легковых автомобилей.

— facepla.net —

Комментарии:

    А про работы по теме ТЭ в СССР забыли сказать, да?

    при получении электричества будет образовываться вода. и чем больше первого тем больше и её. А теперь представим себе как быстро капельки забьют все топливные ячейки и каналы прохода газов – Н2, О2 А как будет работать этот генератор при минусовой температуре?

    вы предлагаете сжечь десятки тон угля,выбросив в атмосферу тонны сажи получить водород,чтоб получить пару ампер тока для новомодной тесло?!
    где жеж тут экономия с экологией?!

    Вот оно – костность мышления!
    Зачем сжигать тоны угля? Мы живем в 21 веке и уже есть технологии позволяющие получать энергию вообще ничего не сжигаю. Остается только грамотно аккумулировать эту энергию для удобного дальнейшего использования.


Водородные топливные элементы осуществляют превращение химической энергии топлива в электричество, минуя малоэффективные, идущие с большими потерями, процессы горения и превращения тепловой энергии в механическую.

Описание:

Водородные топливные элементы осуществляют превращение химической энергии топлива в электричество, минуя малоэффективные, идущие с большими потерями, процессы горения и превращения тепловой энергии в механическую. Водородный топливный элемент – это электрохимическое устройство в результате высокоэффективного «холодного» горения топлива непосредственно вырабатывает электроэнергию. Водород-воздушный топливный элемент с протон-обменной мембраной (PEMFC) является одной из наиболее перспективных технологий топливных элементов .

Протон-проводящая полимерная мембрана разделяет два электрода - анод и катод. Каждый электрод представляет собой угольную пластину (матрицу) с нанесённым катализатором. На катализаторе анода молекулярный водород диссоциирует и отдает электроны. Катионы водорода проводятся через мембрану к катоду, но электроны отдаются во внешнюю цепь, так как мембрана не пропускает электроны.


На катализаторе катода молекула кислорода соединяется с электроном (который подводится из электрической цепи) и пришедшим протоном и образует воду, которая является единственным продуктом реакции (в виде пара и/или жидкости).

Из водородных топливных элементов изготавливают мембранно-электродные блоки, являющиеся ключевым генерирующим элементом энергетической системы.

Преимущества водородных топливных элементов по сравнению с традиционными решениями:

– увеличенная удельная энергоемкость (500 ÷ 1000 Вт*ч/кг),

расширенный диапазон эксплуатационных температур (-40 0 С / +40 0 С),

– отсутствие теплового пятна, шума и вибрации,

надежность при холодном пуске,

– практически неограниченный срок хранения энергии (отсутствие саморазряда),

возможность изменения энергоемкости системы за счет изменения количества топливных баллончиков, что обеспечивает почти неограниченную автономность,

– возможность обеспечить практически любую разумную энергоемкость системы за счет изменения емкости хранилища водорода,

высокая энергоемкость,

– толерантность к примесям в водороде,

длительный срок службы,

– экологичность и бесшумность работы.

Применение:

системы энергоснабжения для БПЛА,

портативные зарядные устройства,

источники бесперебойного питания,

другие устройства.

Топливный элемент - что это такое? Когда и как он появился? Зачем он нужен и почему о них в наше время так часто говорят? Каковы его область примения, характеристики и свойства? Неудержимый прогресс требует ответов на все эти вопросы!

Что такое топливный элемент?

Топливный элемент - это химический источник тока или электрохимический генератор, это устройство для преобразования химической энергии в электрическую. В современной жизни химические источники тока используются повсеместно и представляют собой аккумуляторы мобильных телефонов, ноутбуков, КПК, а также аккумуляторные батареи в автомобилях, источниках бесперебойного питания и т.п. Следующим этапом развития данной области будет повсеместное распространение топливных элементов и это уже никем неопровергаемый факт.

История топливных элементов

История топливных элементов - это ещё одна история о том, как некогда открытые на Земле свойства вещества нашли широкое применение далеко в космосе, а на рубеже тысячелетий вернулись с небес на Землю.

Всё началось в 1839 году , когда немецкий химик Кристиан Шёнбейн опубликовал принципы работы топливного элемента в «Философском журнале». В этом же году англичанин, выпускник Оксфорда, Уильям Роберт Гроув сконструировал гальванический элемент, в последствии названный гальваническим элементом Гроува, он же признан первым топливным элементом. Само название "топливный элемент" было подарено изобретению в год его юбилея - в 1889 году. Людвиг Монд и Карл Лангер - авторы термина.

Немного ранее, в 1874г., Жюль Верн в романе «Таинственный остров» предсказал нынешнюю энергетическую ситуацию, написав, что «Вода в один прекрасный день будет использоваться в качестве топлива, применяться будут водород и кислород, из которых она состоит».

Тем временем, новая технология электроснабжения постепенно совершенствовалась, а начиная с 50-х годов XX века уже и года не проходило без анонсов новейших изобретений в этой области. В 1958 году в США появился первый трактор, работающий на топливных элементах, в 1959г. вышел в свет 5кВт-ный источник питания для сварочной машины, и т.д. В 70-х годах водородные технологии взлетели в космос: появились самолёты и ракетные двигатели на водороде. В 60-х годах РКК "Энергия"разрабатывала топливные элементы для советской лунной программы. Программа "Буран" также не обошлась без них: были разработаны щелочные 10кВт-ные топливные элементы. А ближе к концу века топливные элементы пересекли нулевую высоту над уровнем моря - на их основе разработано электроснабжение немецкой подводной лодки. Возвращаясь на Землю, в 2009 году в США запустили в эксплуатацию первый локомотив. Естественно, на топливных элементах.

Во всей прекрасной истории топливных элементов интересно то, что колесо по-прежнему остается неимеющим аналогов в природе изобретением человечества. Дело в том, что по своему устройству и принципу действия топливные элементы аналогичны биологической клетке, которая, по сути, представляет собой миниатюрный водородно-кислородный топливный элемент. В итоге человек в очередной раз изобрел то, чем природа пользуется уже миллионы лет.

Принцип работы топливных элементов

Принцип работы топливных элементов очевиден даже из школьной программы по химии и именно он был заложен в опытах Уильяма Гроува 1839 года. Всё дело в том, что процесс электролиза воды (диссоциации воды) является обратимым. Как верно то, что, при пропускании электрического тока через воду, последняя расщепляется на водород и кислород, так верно и обратное: водород и кислород можно соединить с получением воды и электричества. В опыте Гроува два электрода размещались в камере, в которую подавались под давлением ограниченные порции чистого водорода и кислорода. В силу небольших объемов газа, а также благодаря химическим свойствам угольных электродов в камере происходила медленная реакция с выделением тепла, воды и, самое главное, с образованием разности потенциалов между электродами.

Простейший топливный элемент состоит из специальной мембраны, используемой как электролит, по обе стороны которой нанесены порошкообразные электроды. Водород поступает на одну сторону (анод), а кислород (воздух) - на другую (катод). На каждом электроде происходят разные химические реакции. На аноде водород распадается на смесь протонов и электронов. В некоторых топливных элементах электроды окружены катализатором, обычно выполненным из платины или других благородных металлов, способствующих протеканию реакции диссоциации:

2H 2 → 4H + + 4e -

где H 2 - двухатомная молекула водорода (форма, в которой водород присутствует в виде газа); H + - ионизированный водород (протон); е - - электрон.

С катодной стороны топливного элемента протоны (прошедшие через электролит) и электроны (которые прошли через внешнюю нагрузку) воссоединяются и вступают в реакцию с подаваемым на катод кислородом с образованием воды:

4H + + 4e - + O 2 → 2H 2 O

Суммарная реакция в топливном элементе записывается так:

2H 2 + O 2 → 2H 2 O

Работа топливного элемента основана на том, что электролит пропускает через себя протоны (по направлению к катоду), а электроны - нет. Электроны движутся к катоду по внешнему проводящему контуру. Это движение электронов и есть электрический ток, который может быть использован для приведения в действие внешнего устройства, подсоединенного к топливному элементу (нагрузка, например, лампочка):

В своей работе топливные элементы используют водородное топливо и кислород. Проще всего с кислородом - он забирается из воздуха. Водород может подаваться непосредственно из некой ёмкости или путем выделения его из внешнего источника топлива (природного газа, бензина или метилового спирта - метанола). В случае внешнего источника его необходимо химически преобразовать, чтобы извлечь водород. В настоящее время большинство технологий топливных элементов, разрабатываемых для портативных устройств, задействуют именно метанол.

Характеристики топливных элементов

    Топливные элементы являются аналогами существующих аккумуляторов в том смысле, что в обоих случаях электрическая энергия получается из химической. Но есть и принципиальные отличия:

    • они работают только пока топливо и окислитель поступают от внешнего источника (т.е. они не могут накапливать электрическую энергию),

      химический состав электролита в процессе работы не изменяется (топливный элемент не нуждается в перезарядке),

      они полностью не зависимы от электричества (в то время как обычные аккумуляторы запасают энергию из электросети).

    Каждый топливный элемент создаёт напряжение в 1В . Большее напряжение достигается последовательным их соединением. Увеличение мощности (тока) реализуется через параллельное соединение каскадов из последовательно соединенных топливных элементов.

    У топливных элементов нет жёсткого ограничения на КПД , как у тепловых машин (КПД цикла Карно является максимально возможным КПД среди всех тепловых машин с такими же минимальной и максимальной температурами).

    Высокий КПД достигается благодаря прямому превращению энергии топлива в электроэнергию. Если в дизель-генераторных установках топливо сначала сжигается, полученный пар или газ вращает турбину или вал двигателя внутреннего сгорания, которые в свою очередь вращают электрический генератор. Результатом становится КПД максимум в 42%, чаще же составляет порядка 35-38%. Более того, из-за множества звеньев, а также из-за термодинамических ограничений по максимальному КПД тепловых машин, существующий КПД вряд ли удастся поднять выше. У существующих топливных элементов КПД составляет 60-80% ,

    КПД почти не зависит от коэффициента загрузки ,

    Ёмкость в несколько раз выше , чем в существующих аккумуляторах,

    Полное отсутствие экологически вредных выбросов . Выделяется только чистый водяной пар и тепловая энергия (в отличие от дизельных генераторов, имеющих загрязняющие окружающую среду выхлопы и требующих их отвода).

Виды топливных элементов

Топливные элементы классифицируются по следующим признакам:

    по используемому топливу,

    по рабочему давлению и температуре,

    по характеру применения.

В целом, выделяют следующие типы топливных элементов :

    Твердооксидный топливный элемент (Solid-oxide fuel cells - SOFC);

    Топливный элемент с протонообменной мембраной (Proton-exchange membrane fuel cell - PEMFC);

    Обратимый топливный элемент (Reversible Fuel Cell - RFC);

    Прямой метанольный топливный элемент (Direct-methanol fuel cell - DMFC);

    Расплавной карбонатный топливный элемент (Molten-carbonate fuel cells - MCFC);

    Фосфорнокислый топливный элемент (Phosphoric-acid fuel cells - PAFC);

    Щелочной топливный элемент (Alkaline fuel cells - AFC).

Одним из типов топливных элементов, работающих при нормальных температурах и давлениях с использованием водорода и кислорода, являются элементы с ионообменной мембраной. Образующаяся вода не растворяет твердый электролит, стекает и легко отводится.

Проблемы топливных элементов

    Главная проблема топливных элементов связана с необходимостью наличия "упакованного" водорода, который можно было бы свободно приобрести. Очевидно, проблема должна решиться со временем, но пока ситуация вызывает легкую улыбку: что первично - курица или яйцо? Топливные элементы ещё не настолько развиты, чтобы строить водородные заводы, но их прогресс немыслим без этих заводов. Здесь же отметим проблему источника водорода. На настоящий момент водород получают из природного газа, но повышение стоимости энергоносителей повысит и цену водорода. При этом в водороде из природного газа неизбежно присутствие CO и H 2 S (сероводород), которые отравляют катализатор.

    Распространенные платиновые катализаторы используют очень дорогой и невосполнимый в природе металл - платину. Однако данную проблему планируется решить использованием катализаторов на основе ферментов, являющихся дешевым и легкопроизводимым веществом.

    Проблемой является и выделяющееся тепло. Эффективность резко возрастет, если генерируемое тепло направить в полезное русло - производить тепловую энергию для системы теплоснабжения, использовать в качестве бросового тепла в абсорбционных холодильных машинах и т.п.

Топливные элементы на метаноле (DMFC): реальное применение

Наивысший практический интерес на сегодняшний день представляют топливные элементы прямого действия на основе метанола (Direct Methanol Fuel Cell, DMFC). Ноутбук Portege M100, работающий на топливном элементе DMFC выглядит следующим образом:

Типичная схема DMFC-элемента содержит, помимо анода, катода и мембраны, несколько дополнительных комплектующих: картридж с топливом, датчик метанола, насос для циркуляции топлива, воздушный насос, теплообменник и т.д.

Время работы, например, ноутбука по сравнению с аакумуляторами планируется увеличить в 4 раза (до 20 часов), мобильного телефона - до 100 часов в активном режиме и до полугода в режиме ожидания. Подзарядка будет осуществляться добавлением порции жидкого метанола.

Основной задачей является поиск вариантов использования раствором метанола с наивысшей его концентрацией. Проблема в том, что метанол - достаточно сильный яд, смертельный в дозах от нескольких десятков граммов. Но концентрация метанола напрямую влияет на длительность работы. Если ранее применялся 3-10%-й раствор метанола, то уже появились мобильные телефоны и КПК с использованием 50%-го раствора, а в 2008 году в лабораторных условиях специалистами MTI MicroFuel Cells и, чуть позже, Toshiba получены топливные элементы, работающие на чистом метаноле.

За топливными элементами - будущее!

Наконец, об очевидности большого будущего топливных элементов говорит тот факт, что международная организация IEC (International Electrotechnical Commission), определяющая индустриальные стандарты для электронных устройств, уже объявила о создании рабочей группы для разработки международного стандарта на миниатюрные топливные элементы.

С точки зрения «зеленой» энергетики у водородных топливных элементов крайне высокий КПД - 60%. Для сравнения: КПД лучших двигателей внутреннего сгорания составляет 35-40%. Для солнечных электростанций коэффициент составляет всего 15-20%, но сильно зависит от погодных условий. КПД лучших крыльчатых ветряных электростанций доходит до 40%, что сравнимо с парогенераторами, но ветряки также требуют подходящих погодных условий и дорогого обслуживания.

Как мы видим, по этому параметру водородная энергетика является наиболее привлекательным источником энергии, но все же существует ряд проблем, мешающих ее массовому применению. Самая главная из них - процесс добычи водорода.

Проблемы добычи

Водородная энергетика экологична, но не автономна. Для работы топливному элементу нужен водород, который не встречается на Земле в чистом виде. Водород нужно получать, но все существующие сейчас способы либо очень затратны, либо малоэффективны.

Самым эффективным с точки зрения объёма полученного водорода на единицу затраченной энергии считается метод паровой конверсии природного газа . Метан соединяют с водяным паром при давлении 2 МПа (около 19 атмосфер, т. е. давление на глубине около 190 м) и температуре около 800 градусов, в результате чего получается конвертированный газ с содержанием водорода 55-75%. Для паровой конверсии необходимы огромные установки, которые могут быть применимы лишь на производстве.


Трубчатая печь для паровой конверсии метана - не самый эргономичный способ добычи водорода. Источник: ЦТК-Евро

Более удобный и простой метод - электролиз воды. При прохождении электрического тока через обрабатываемую воду происходит серия электрохимических реакций, в результате которых образуется водород. Существенный недостаток этого способа - большие энергозатраты, необходимые для проведения реакции. То есть получается несколько странная ситуация: для получения водородной энергии нужна… энергия. Во избежание возникновения при электролизе ненужных затрат и сохранения ценных ресурсов некоторые компании стремятся разработать системы полного цикла «электричество - водород- электричество», в которых получение энергии становится возможным без внешней подпитки. Примером такой системы является разработка Toshiba H2One.

Мобильная электростанция Toshiba H2One

Мы разработали мобильную мини-электростанцию H2One, преобразующую воду в водород, а водород в энергию. Для поддержания электролиза в ней используются солнечные батареи, а излишки энергии накапливаются в аккумуляторах и обеспечивают работу системы в отсутствие солнечного света. Полученный водород либо напрямую подается на топливные ячейки, либо отправляется на хранение во встроенный бак. За час электролизер H2One генерирует до 2 м 3 водорода, а на выходе обеспечивает мощность до 55 кВт. Для производства 1 м 3 водорода станции требуется до 2,5 м 3 воды.

Пока станция H2One не способна обеспечить электричеством крупное предприятие или целый город, но для функционирования небольших районов или организаций ее энергии будет вполне достаточно. Благодаря своей мобильности она может использоваться также как и временное решение в условиях стихийных бедствий или экстренного отключения электричества. К тому же, в отличие от дизельного генератора, которому для нормального функционирования необходимо топливо, водородной электростанции достаточно лишь воды.

Сейчас Toshiba H2One используется лишь в нескольких городах в Японии - к примеру, она снабжает электричеством и горячей водой железнодорожную станцию в городе Кавасаки.


Монтаж системы H2One в городе Кавасаки

Водородное будущее

Сейчас водородные топливные элементы обеспечивают энергией и портативные пауэр-банки, и городские автобусы с автомобилями, и железнодорожный транспорт (более подробно об использовании водорода в автоиндустрии мы расскажем в нашем следующем посте). Водородные топливные элементы неожиданно оказались отличным решением для квадрокоптеров - при аналогичной с аккумулятором массе запас водорода обеспечивает до пяти раз большее время полета. При этом мороз никак не влияет на эффективность. Экспериментальные дроны на топливных элементах производства российской компании AT Energy применялись для съемок на Олимпиаде в Сочи.

Стало известно, что на грядущих Олимпийских играх в Токио водород будет использоваться в автомобилях, при производстве электричества и тепла, а также станет главным источником энергии для олимпийской деревни. Для этого по заказу Toshiba Energy Systems & Solutions Corp. в японском городе Намиэ строится одна из крупнейших в мире станций по производству водорода. Станция будет потреблять до 10 МВт энергии, полученной из «зеленых» источников, генерируя электролизом до 900 тонн водорода в год.

Водородная энергетика - это наш «запас на будущее», когда от ископаемого топлива придется окончательно отказаться, а возобновляемые источники энергии не смогут покрывать нужды человечества. Согласно прогнозу Markets&Markets объем мирового производства водорода, который сейчас составляет $115 млрд, к 2022 году вырастет до $154 млрд. Но в ближайшем будущем массовое внедрение технологии вряд ли произойдет, необходимо еще решить ряд проблем, связанных с производством и эксплуатацией специальных энергоустановок, снизить их стоимость. Когда технологические барьеры будут преодолены, водородная энергетика выйдет на новый уровень и, возможно, будет так же распространена, как сегодня традиционная или гидроэнергетика.